Italian Society of Soil Science School of Soil Biodiversity and Bioindication - XI cycle Portici (NA) 4-7 June 2019

Soil contamination

Paola Adamo

Dipartimento di Agraria Università di Napoli Federico II <u>paola.adamo@unina.it</u> Soil is generally defined as the top layer of the earth's crust, formed by mineral particles, organic matter, water, air and living organisms. As soil formation is an extremely slow process, soil can be considered essentially as a nonrenewable resource.

Soil functions

Soils deliver ecosystem services that enable life on Earth

United Nations

Soil degradation processes or threats

Sealing

Erosion

Loss of Organic Carbon

Compaction

Salinization

Pollution

floods and landslides

Thematic Strategy for Soil Protection (2006)

What is soil contamination?

Soil contamination and pollution mean different things even though we often use these terms to mean one thing.

Soil pollution means the presence in soil of chemicals or substances at a **higher than normal concentration** that has adverse effects on living organisms (FAO and ITPS, 2015).

Soil contamination is when the concentration of chemicals, nutrients or elements in the soil becomes more than it normally or naturally is, as a result of human action. If this contamination goes on to harm living organisms, we can call it pollution.

Main contaminants

Inorganic: heavy metals, cyanides, fluorides, radionuclides, asbestos, ...

Organic: petroleum hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), pesticides and herbicides, dioxins, ...

«With a growing population expected to reach 9 billion by 2050, soil pollution is a worldwide problem which reduces food security by either reducing crop yields due to toxic contaminant levels or by producing foods that are unfit for human and animal consumption. The entity of the problem is still unknown as not

One of the highest ranking The entity of the problem is still unknown as problem in Europe certain data are available on a global scale»

Contamination can seriously affect the ability of soil to perform some of its key ecosystems functions, for example it reduces the soil ability to act as a carbon sink, making it difficult to achieve the 1.5/2 °C target of the Paris Agreement (Service de l'observation et des statistiques, 2015)

Soil contamination reduces food security both by reducing yields of crops due to toxic levels of contaminants and by causing the crops that are produced to be unsafe to consume, endangering the possibility of meeting the SDGs (UN, 2017).

2 (zero hunger),

3 (good health and well-being), 15 (life on land)

Science for Environment Policy

IN-DEPTH REPORT Soil Contamination: Impacts on Human Health

September 2013 Issue 5

6 0

Decision makers, scientists, businesses and individual citizens generally accept and understand that air and water pollution can have negative impacts on human health, but the impacts of such soil pollution on our health have had a much lower profile, and are not so well understood.

Env kaoment

EN

Brussels, 22.9.2006 COM(2006)231 final

COMMUNICATION FROM THE COMMISSION TO THE COUNCIL, THE EUROPEAN PARLIAMENT, THE EUROPEAN ECONOMIC AND SOCIAL COMMITTEE AND THE COMMITTEE OF THE REGIONS

Thematic Strategy for Soil Protection

[SEC(2006)620] [SEC(2006)1165] **** * * * *

COMMISSION OF THE EUROPEAN COMMUNITIES

Brussels, 22.9.2006 COM(2006) 232 final

2006/0086 (COD)

Proposal for a

DIRECTIVE OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

establishing a framework for the protection of soil and amending Directive 2004/35/EC

(presented by the Commission)

Despite its importance for our society, and unlike air and water, there is no EU legislation specifically targeting the protection of soil

EN

ΕN

It is important to distinguish between:

Iocal soil contamination

occurs where intensive industrial activities, inadequate waste disposal, mining, military activities or accidents have introduced excessive amounts of contaminants. Soils only have a limited ability to process these contaminants, through filtering or transformation. Once this ability is exceeded, issues such as water pollution, human contact with polluted soil, plants taking up contaminants and dangers from landfill gases become more significant (*EEA, 2007*).

> diffuse soil contamination

covering large areas

Local contamination Abandoned mine sites in Morocco

local contamination resulting from past intensive Pb-Zn mining activities (processing and exploitation);

these sites provide sources of contamination by heavy metals which can be transferred by wind and water into nearby soils, stream systems and vegetation.

The most important Pb and Zn mineral-hosts in soil and tailings

 $(PbCO_3)$

 $(Zn_4Si_2O_7(OH)_2H_2O)$

(ZnCO3)

Soil alkaline conditions (pH 7.9-8.2) and low solubility of Pb and Zn mineral phases

Low mobility by dissolution and low bioavailability of Pb and Zn

the transfer can occur by particles <u>water</u> and <u>wind</u> erosion given aridity and strong winds, inhalation of airborne particulates may be a concern

P. Iavazzo et al. / Journal of Geochemical Exploration 113 (2012) 56–67

Local contamination resulting from past industrial activities

THE BAGNOLI BROWNFIELD SITE

In the 1990s abandoned by the Italian steel-producing company Italsider
Classified as Site of National Interest (SNI) (Italian Parliament, 2000)
Reclamation started in 1994: excavation and soil-washing techniques

Soil morphology strongly disturbed by occurrence and stratification of materials used in the industrial process. Low mobility of heavy metals Fine sediments illuviation down the profile

Parco minerali

Campo Americano

damo et al., The Science of the Total Environment 295 (2002) 17–34

Parco Omo

Parco fossili

Severe radioactive soil contamination caused by Fukushima nuclear plant accident (FNPA) that occurred following the Great East Japan Earthquake on March 11, 2011.

Vertical distribution of ¹³⁴Cs and ¹³⁷Cs in the top 0–15 cm layer of soil

¹³⁷Cs strongly bound to the fine clay, weathered biotite, and OM in soil (*Nakanishi, 2018*)

Soil decontamination by Radiocesium

Top soil removing and stripping, soil bags piled up and stored in nuclear plant

STATUS OF LOCAL SOIL CONTAMINATION IN EUROPE

in EU around 1,5 millions of potentially contaminated sites (19,000 new sites every year), 148,000 (10% PCS) contaminated sites, 65,500 (45% CS) remediated sites (JRS, 2018)

Overview of activities causing soil contamination in Europe

(JRS, 2014)

Main contaminants affecting soil in and around contaminated sites in EU

Overview of contaminants affecting soil in Europe

FIGURE 4: Distribution of contaminants affecting soil and groundwater in Europe.

(JRS, 2014)

Annual cost for management of contaminated sites is estimated around 6 billion Euros annually

Very important element taken into account by policy makers and the most criticized issue in the proposed European soil framework directive!

Remediation techniques

The most commonly used remediation procedure seems to be the ex-situ technique "dig-and-dump", which involves the excavation and off-site disposal of contaminated soil.

Remediation actions are very costly, especially if the area to be remediated is large and the contamination is persistent (European Commission, 2006).

2018 JRS Technical report

When a soil must be considered contaminated?

Table 6. Main approaches and legal documents framing site assessment.

Country	Approach for assessing contaminated sites	Guidance and legal instruments framing site assessment				
	Environmental quality standards and	ALSAG (50); water act (59); waste- management act (60).				
Austria	site-specific risk assessment.	Austrian Standard ÖNORM S 2088 (part 1: groundwater; part 2: soil; part 3: air) (61).				
Belgium (Buxelles- Capitale)	For single pollution and mixed pollution: exceeding soil-remediation standards.	Decree on soil remediation and soil management (⁶²). S-Risk model.				
	For orphan pollution: site-specific risk assessment.					
Belgium (Flanders)	Historical contamination is evaluated using site-specific risk assessment.					
	New contamination is addressed comparing values with soil-quality standards approach.	S-Risk model (63).				
France	Site-specific risk assessment.	Interpretation of the state of the environments (70).				
Germany	Risk-based soil screening values (trigger values) and site-specific risk assessment.	Federal soil-protection act (71).				
Hungary	Site-specific risk assessment to determine remediation limits.	Ministerial decree No 6/2009 (IV. 14.) or the contamination-limit values and measurements necessary for the protection of geological formations and groundwater (⁷²).				
Ireland	Site-specific risk assessment with a prioritisation in three phases	Code of practice for environment risk assessment for unregulated waste- disposal sites (¹³).				
Italy	Screening values for assessing the need for investigation and on-site-specific risk assessment for assessing the need for	Legislative Decree n. 152/2006 approving the Code on the Environment (⁷⁴).				
	Screening values and site-specific rick	Dutch soil-protection act/soil ministerial circular (70).				
Netherlands	assessment depending on the tier.	Sanscrit risk-assessment decision tool, including the CSOIL exposure model soil- protection act (79).				

Combined approaches to encourage staged assessment processes, considering screening values but allowing the flexibility to use comprehensive assessment tools for site-specific risk assessment are nowadays the most extended practice to deal with soil contamination across Europe.

Screening Values (SVs)

Screening Values (SVs) are generic soil-quality standards defined for most pollutants and different soil uses and adopted in many countries to regulate the management of contaminated soil.

They are in the form of concentration thresholds (mg/kg soil-dw) of contaminants in soil above which certain actions are recommended or enforced.

Soil SVs adopted in EU countries are widely variable for

terms: screening values, guidance values, target and intervention values, max acceptable concentrations, cut off values, trigger values, environmental quality objectives, etc.

numerical values

Lack of a coherent framework in Europe for the derivation and in the use of SVs.

Derivation methods have scientific and political bases

SVs for potentially unacceptable risk for metals and metalloids (mg/kg d.w.)(residential soil-use)

	AUT	BE(F)*	BE(B)	BE(W)	CZE	FIN	ITA	LTU	NLD	POL	SVK	UK	DNK
As	50	110	110	300	70	50	20	10	55	22.5	50	20	20
Ba					1000			600	625	285	2000		
Be					20		2	10	30		30		
Cd	10	6	6	30	20	10	2	З	12	5.5	20	2	5
Со					300	100	20	30	240	45	300		
Cr	250		300	520	500	200	150	100	380	170	800	130	1000
Cu	600	400	400	290	600	150	120	100	190	100	500		1000
Hg	10	15	15	56	10	2	1	1.5	10	4	10	8	3
Pb	500	700	700	700	300	200	100	100	530	150	600	450	400
Mo					100			5	200	25	200		
Ni	140	470	470	300	250	100	120	75	210	75	500		30
Sb	5				40	10	10	10	15				
Se							З	5	100		20	35	
Sn					300		1	10	900	40	300		
Те							\sim		600				
TI	10						1		15				
v					450	150	90	150	250		500		
Zn		1000	1000	710	2500	250	150	300	720	325	3000		1000

*For new contaminants only

Carlon, 2007

Italian screening values (92 contaminants) in soil according to two different land uses (residential and industrial/commercial) - DL 152/2006

		Siti ad uso Verde pubblico,	i ad uso Siti ad uso de Commerciale blico, e vato e Industriale idenziale (mg kg ⁻¹ g kg ⁻¹ espressi pressi come come ss)	No SVs for agricultural soils
		privato e residenziale (mg kg ⁻¹ (espressi come (ss)		
	Composti inorganici			SVs for assessing the need for
1	Antimonio	10	30	investigation
2	Arsenico	20	50	(potentially contaminated soil)
з	Berillio	2	10	
4	Cadmio	2	15	if available, soil background values
5	Cobalto	20	250	are used as reference levels.
6	Cromo totale	150	800	
7	Cromo VI	2	15	
8	Mercurio	1	5	
9	Nichel	120	500	on-site-specific risk assessment for
10	Piambo	100	1000	assessing the need for intervention
11	Ramo	120	600	(Contaminated soil)
12	Selenio	3	15	

Adverse effects are not necessarily only manifested in the environment when PTMs have an anthropogenic origin. Naturally high concentrations of some elements also cause toxicity and lead to natural adaptation of the biota to these high concentrations.

Esempi:

Cr, Ni in serpentine soils (Kelepertzis *et al.*, 2013; Kelepertzis and Stathopoulou, 2013)

As in groundwater in Bangladesh, India, China, Mexico, etc. (Mahimairaja *et al.*, 2005)

Se in seleniferous soils (Dhillon and Dhillon, 2003)

Where contaminants are tightly bound by the soil and not bioavailable, exhaustive clean-up of soils may be not necessary as the contaminants may not pose a risk to end users. By contrast, the "risk-based land management" (RBLM), may save millions of euros in remediation costs.

The pseudototal metal fraction is of little value for the prediction of ecological impact.

✓ An increasing need is felt not only to analyse metal concentrations in soils, but also to assess their influence on the terrestrial ecosystem itself, such as toxicity of metals to soil micro-organisms, and on other boundary ecosystems such as ground water, air, plants, animals and humans.

Take home messages

- An evident problem in terms of countries capability to deal with soil pollution problem exists.
- The use of SVs alone might not be appropriate to assess the problem in an efficient and economically viable manner.
- Activities of harmonization of SVs derivation procedures are necessary at a EU level.
- For a correct assessment of risk/toxicity of a polluted soil and to predict its decrease after remediation it is crucial to establish the mobility, bioavailability and bioaccessability of contaminants.
- New approaches moving from measuring concentrations to measuring effects are required.
- A comprehensive EU strategy for soil protection is needed.