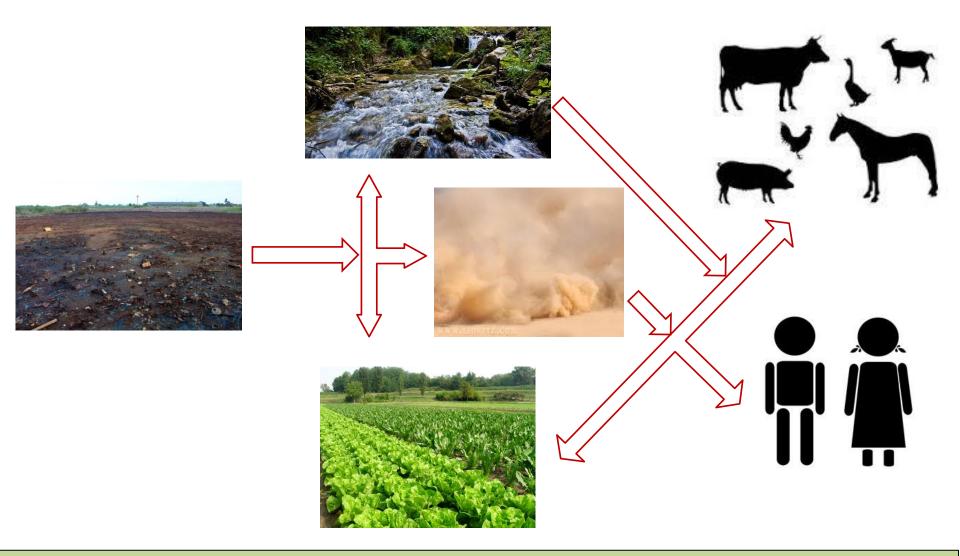
Italian Society of Soil Science School of Soil Biodiversity and Bioindication XI cycle

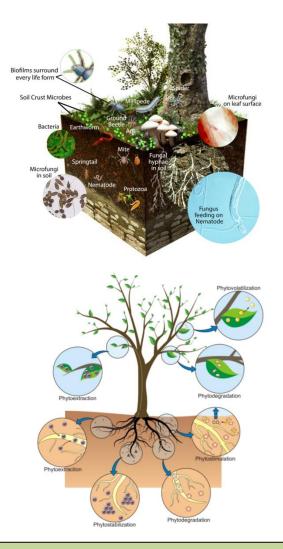
BIODIVERSITY AND BIOINDICATORS IN MONITORING AND MANAGEMENT OF CONTAMINATED SOILS

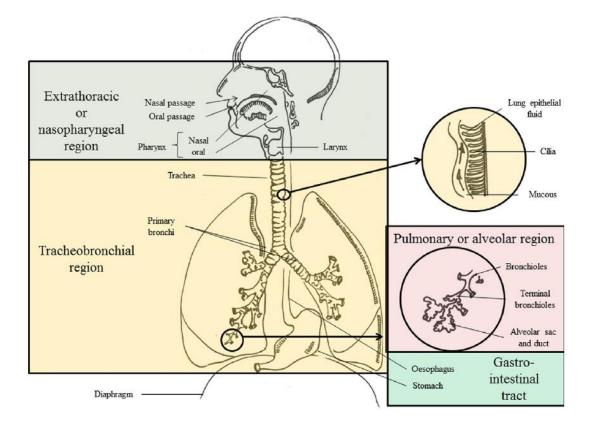
Università degli Studi di Napoli Federico II

Antonio G. Caporale (ag.caporale@unina.it)

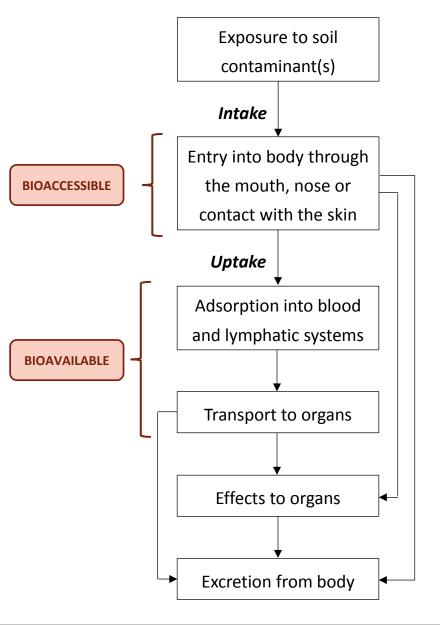

Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy

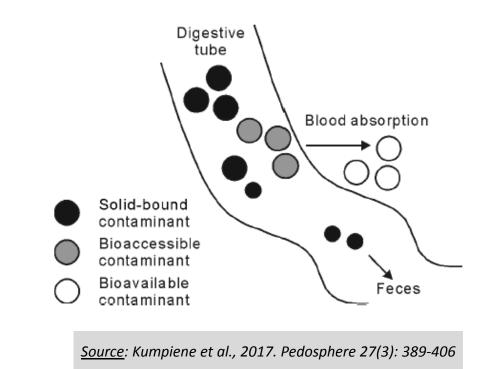
Soil contamination


Soil contamination by potentially toxic elements (PTEs) poses serious risks to surrounding environment, water bodies, soil biota, plants and human health



A proper management of risks for environment and human beings of potentially contaminated sites implies the comprehension of contaminant bioaccessibility to soil biota, plants and humans living or working nearby the sites

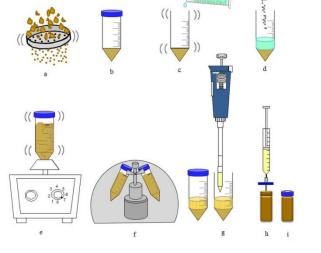



The study of contaminant bioaccessibility is only partially recognised by environmental regulations and stakeholders

The International Union of Pure and Applied Chemistry (IUPAC) defines as <u>bioaccessible</u> a substance 'able to come in contact with a living organism and interact with it' and <u>bioavailable</u> a substance 'able to be absorbed by living organisms'

issues

Bioaccessibility and bioavalability of soil contaminants depends on the contaminant chemistry, soil properties and

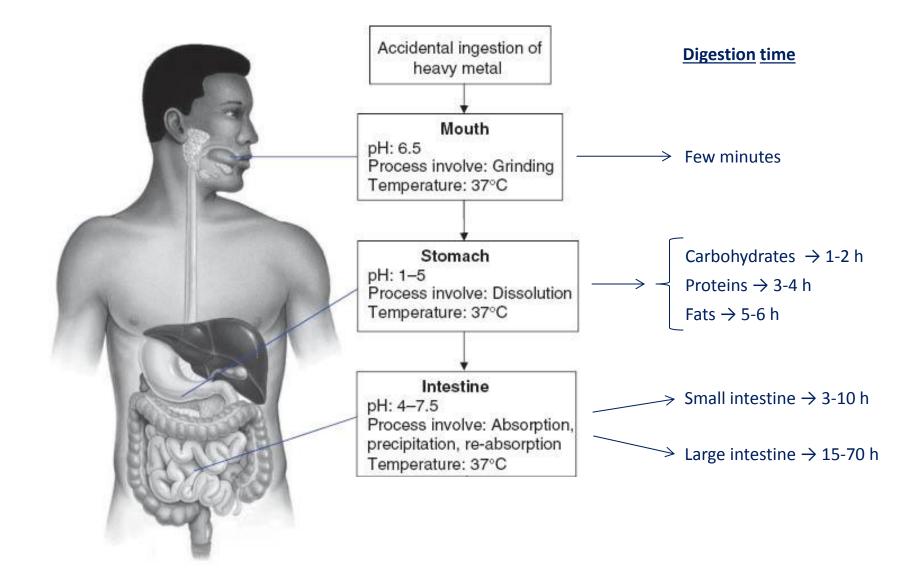

In-vitro tests for bioaccessibility of soil contaminants in soil must enable quantification of the dissolution under 'realistic worst case conditions', meaning that the test would simulate the highest possible bioaccessibility in extractions with one or more simulants of body fluids, at body temperature (37 °C), for realistic reaction times

available, as the animal uptake measured in these tests is believed to

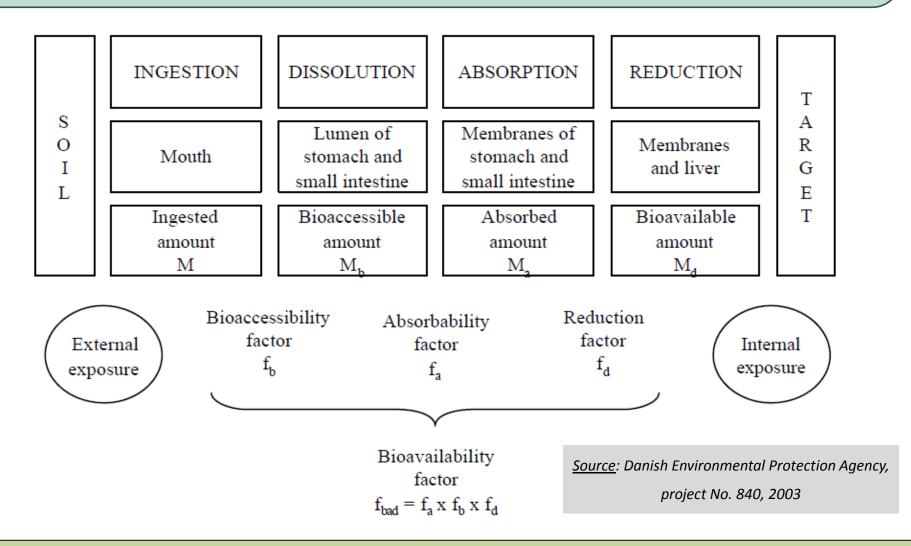
resemble the conditions applied during toxicity testing. However, these

assays are time- and resource-consuming and comprise lots of ethical

chemical conditions in the human digestive and respiratory systems or body skin



Oral uptake processes of soil contaminants



Thus, oral bioavailability of soil contaminants depends primarily on the ability of stomach and small intestine to dissolve the contaminant (bioaccessibility) and then on the ability of intestinal membranes to absorb the contaminants

In-vitro methods to assess oral bioaccessibility of metals

Method ^{a)}	TE(s)	Extraction procedure	Simulated digestive compartment	рН	Tempe- rature	L/S ratio ^{b)}	Residence time	Reference
					°C			
PBET	As, Pb	Batch	Stomach	2.5	37	100:1	1 h	Ruby et al., 1992,
	,		Small intestine	7.0	37	100:1	4 h	1996
SBET	As, Cd, Pb	Batch	Stomach	1.5	37	100:1	1 h	Drexler, 1999
IVG	As	Batch	Stomach	1.8	37	150:1	1 h	Rodriguez and
			Small intestine	5.5	37	150:1	1 h	Basta, 1999
USP	Pb, Cr, As, Cd, Ni	Batch	Stomach	1.0	37	1000:1	2 h	Hamel <i>et al.</i> , 1998
MB&SR	Pb, Cr, As, Cd	Batch	Mouth	6.4	37	160:1	5 s	Hamel <i>et al.</i> , 1999
			Stomach	2.0	37	2160:1	2 h	
			Small intestine	7.5	37	4770:1	4 h	
DIN	As, Cd, Pb, Cr, Hg	Batch	Mouth	6.4	37	15:1	0.5 h	Hack and
			Stomach	2.0	37	50:1	2 h	Selenka, 1996
			Small intestine	7.5	37	100:1	6 h	
SHIME	As, Cd, Pb	Batch	Stomach	5.2	37	2.5:1	3 h	Molly <i>et al.</i> , 1993
			Small intestine	6.5	37	4:1	5 h	
RIVM	As, Cd, Pb	Batch	Mouth	6.5	37	15:1	$5 \min$	Sips et al., 1998
			Stomach	1.5	37	37.5:1	2 h	
			Small intestine	5.5	37	97.5:1	2 h	
TGM	As, Cd, Pb	Dynamic	Mouth	5.0	37	5:1	$5 \min$	Minekus et al., 1995
			Stomach	2.0	37	30:1	1.5 h	
			Small intestine	7.0	37	51:1	6 h	
AOACPD	Cu, Zn, Mn, Fe, Al	Batch	Stomach	1.1, 2.0	37	150:1	16 h	AOAC, 2000
UBM	As, Cd, Sb, Pb,	Batch	Mouth	6.5	37	15:1	20 s	BARGE-INERIS,
	Montana		Stomach	1.2	37	37.5:1	1 h	2010
	NIST ^{c)} 2711 soil		Small intestine	6.3	37	97.5:1	4 h	

Source: Kumpiene et al., 2017. Pedosphere 27(3): 389-406

Methodological complexity of in-vitro assays

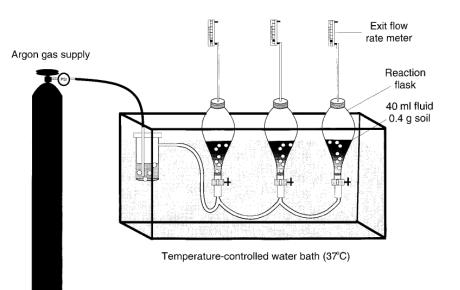
								0.6g of soil	
* * BARG						h Group of E		Add 9.0 mL of Saliva (S) Mix by h Add 13.5 mL of Gastric fluid (G) Adjust the pH to 1.2 ± 0.05 Vix, end-over-end for 1 hour at 37 °C	and (10 s)
	REAGENTS	Saliva (S)	Gastric (G)	Duodenal (D)	Bile (B)	Volume (mL)		Ļ	-
	KCI	448	412	282	188	(IIIL)	Add 27mL of	Ves Check the pH Ves	Stop the gastric
	NaH ₂ PO ₄	444	133	-	-		duodenal fluid (D) —	$- \frac{\text{Yes}}{1.2 < \text{pH} < 1.5} \text{ Yes} =$	samples
			-						i i
	KSCN	100	-	-	-		Add 9mL of bile		
	Na ₂ SO ₄	285	-	-	-		fluid (B)	No	
norganic (I)	NaCl	149	1376	3506	2630		Adjust the pH to	1	
	CaCl ₂	-	200	-	-	250	6.3 ± 0.5		
	NH4Cl	-	153	-	-				
	NaHCO ₃	-	-	2803.5	2893		Mix, end-over-end for		
	KH₂PO₄	-	-	40	-		4 hours at 37 °C	↓	
	MgCl ₂	-	-	25	-			Restart the test from	
	NaOH (1M)	0.9 mL	-	-	-		Stop the gastro-	the beginning	
	HCl (37%)	-	4.15 mL	90 uL	90 uL		intestinal extraction		
	Urea	100 mg	42.5	50	125				
Organic (O)	Glucose		325	-	-	250			
organic (o)	Glucuronic acid		10	-	-	200	Note the final pH		
	Glucosamine hydrochloride		165	-	-				
	Alpha amylase	72.5 mg	-	-	-		Centrifugation		Centrifugation
	Mucin Uric acid	25 mg 7.5 mg	1500	-	-		at 4500 g (15 min)		at 4500 g (15 min
	Bovine Serum Albumin		500	500	900		at 4500 B (15 mm)		ar 4200 B (12) IIIII
F arman	Pepsin	-	500	-	-				
Enzymes	CaCl ₂	-	-	100	111	250+250= 500	Add 1.0 mL HNO ₃		Add 0.5 mL HNO
	Pancreatin	-	_	1500	-	500	(67%)		(67%)
	Lipase	-	-	250	-			ANALYSIS	
	Bile	-	-	250	3000		Gastro-Intestinal		Gastric samples
pH		6,5 +/- 0,5	- 1,1 +/- 0,1	- 7,4 +/-0,2	8+/-0.2	-	samples		
Рп	ITU	0,5 +7-0,5	1,1 7/- 0,1	7,4 7/-0,2	0 4/- 0.2				

Simplified in-vitro bioaccessibility tests

Physiologically based extraction test (PBET)

(Ruby et al., 1992; 1996)

Stomach phase \rightarrow 6 chemicals (pH 2.5 - 1 h)


Small intestine phase \rightarrow + 3 chemicals (pH 7 - 4 h)

Simplified bioaccessibility extraction test (SBET)

(Drexler, 1999)

Stomach phase \rightarrow Glycine and HCl

(only 2 chemicals, pH 1.5 - 1 h)

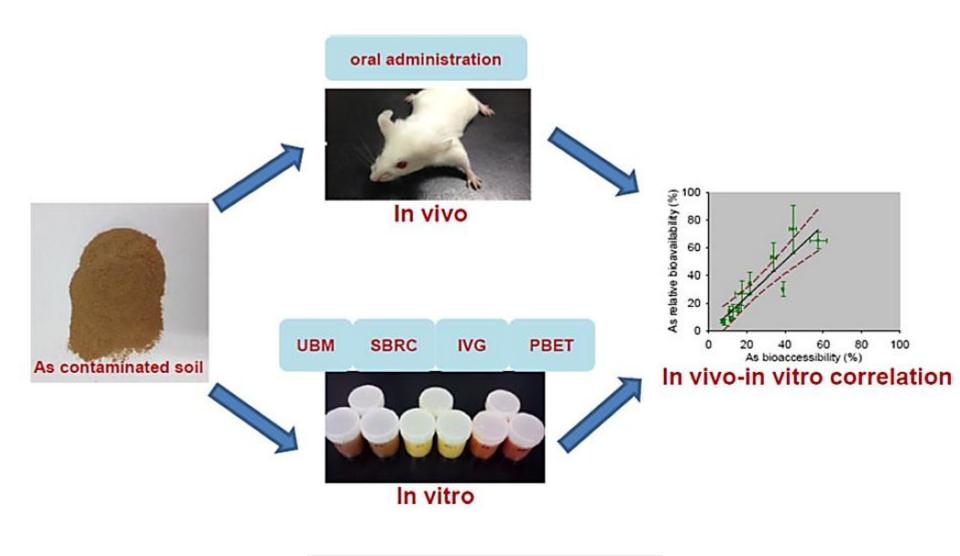
SBET was validated for Pb by an in-vivo swine study

(Ruby et al., 1999)

In-vivo ingestion studies using metal-containing feed

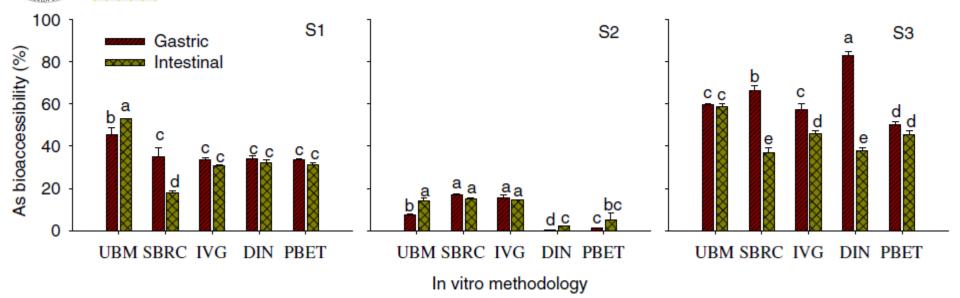
Soil type	Pb concentration range (mg/kg)	Specimen and biomarker	Dose, period, state	RBA (%)	Reference
Mining	4482-40,214	Swine (5 weeks age, $BW = 9.5 \pm 1.2 \text{ kg}$), kidney/liver/bone/urine	50-4000 μg Pb/kg BW day, 14 days, fasting	8.25-58.67 ^b	(Denys et al., 2012)
	1270-14,200	Swine (5–6 weeks age, BW = 8–11 kg), blood/ liver/kidney/femur	15 days, fasting	6-105	(Casteel et al., 2006)
	1270-14,200	Swine (5–6 weeks age, BW = 10 ± 12 kg), blood/liver/kidney/bone	15 days, fasting	0.75–97.75	(Schroder et al., 2004)
	3900	Rabbits (BW = 2.1 kg), blood/liver/kidney/ bone	2.0 ± 0.02 g Pb/kg BW, 36 h, fasting	9	(Ruby et al., 1993)
	3908-10,230	Rats	fed	8.7-36	(Ruby et al., 1996)
	200-6330	Minipigs (10 weeks age, BW = 4.8 kg), kidney/ liver/bone/urine	500 μg Pb/kg BW day, 28 days, fasting	17-63	(Marschner et al., 2006)
	810, 3908	Rats (7—8 weeks age), blood/liver/bone	30 days, fed	8.95, 13.57	(Freeman et al., 1992)
	2924	Human	Fast and fed	26.2(fast), 2.52 (fed) ^a	(Maddaloni et al., 1998)
	3870, 14,200	Swine (BW = $8-9$ kg), kidney/liver/bone	75, 225 and 675 μg Pb/kg BW day, 15 days, fasting		(Casteel et al., 1997)
	516-4163	Mice (BW = $20-25$ g), blood	2150 -10700 µg Pb/kg BW, 48 h, fasting	7–26	(Li et al., 2015)
Smelter	1388, 2090	Rats		35, 41	(Ruby et al., 1996)
	1460-30,155	Swine (5 weeks age, BW = 9.5 ± 1.2 kg), kidney/liver/bone/urine	50-4000 μg Pb/kg BW day, 14 days, fasting		(Denys et al., 2012)
	536-3200	Mice (BW = $20-25$ g), blood	48 h, fasting	10-63	(Smith et al., 2011a)
	2154	Rats blood/liver/kidney/bone	15 days, fed	35.5°	(Hettiarachchi et al., 2003)
	250-25,329	Mice (BW = $20-25$ g), blood	2150 -10700 μg Pb/kg BW, 48 h, fasting	30.8-84.3	(Li et al., 2015)
	237-6330	Swine (6—8 weeks age, BW = 20—25 kg), blood	5 days, single dose, fasting	17-63	(Juhasz et al., 2009)
Small arm range	4503-23,409	Swine, blood/liver/kidney/femur	15 days	77–140 ^c	(Bannon et al., 2009)
Gaswork	1343	Mice (BW = $20-25$ g), blood	48 h, fasting	43	(Smith et al., 2011a)
Shooting range	576, 1801	Mice (BW = $20-25$ g), blood	48 h, fasting	85, 89	(Smith et al., 2011a)
Dust	29-738	Mice (BW = $18-20 \text{ g}$), blood	340-6220 μg Pb/kg BW, 48 h, fasting	29.1-60.1	(Li et al., 2014)
	1693-6799	Children		11.25-21.48 ^d	(Oliver et al., 1999)
Incinerator and residential		Swine (6—8 weeks age, BW = 20—25 kg), blood	5 days, single dose, fasting	10.1–19.1	(Juhasz et al., 2009)
Urban soil	12.6-1198	Female mice (BW = $20-22$ g), kidney	10 days, repeat dose, fasting	17.3-86.6	(Li et al., 2016)
Farming	215-1543	Mice (BW = $20-25$ g), blood	2150–10,700 μg Pb/kg BW, 48 h, fasting		(Li et al., 2015)
Spiking and aging soils	1500	Swine (BW = $20-25 \text{ kg}$), blood	5 days, single dose, fasting	34-59	(Wijayawardena et al., 2014)

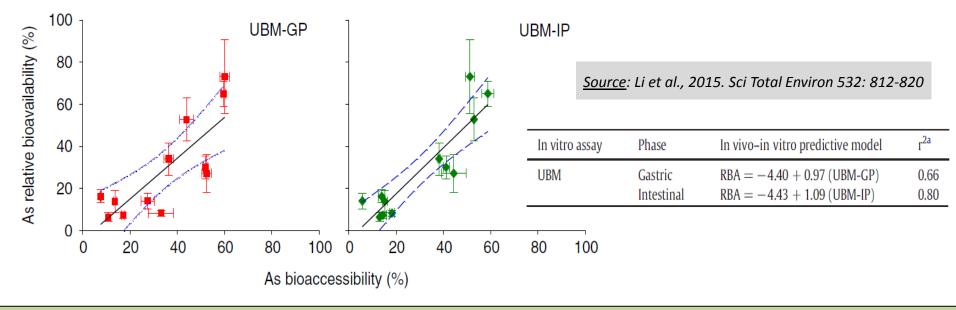
<u>Source</u>: Yan et al., 2017. Chemosphere 184: 27-42


School Bio-Bio SISS – Portici, 4-7 June 2019

Caporale A.G. - University of Naples Federico II

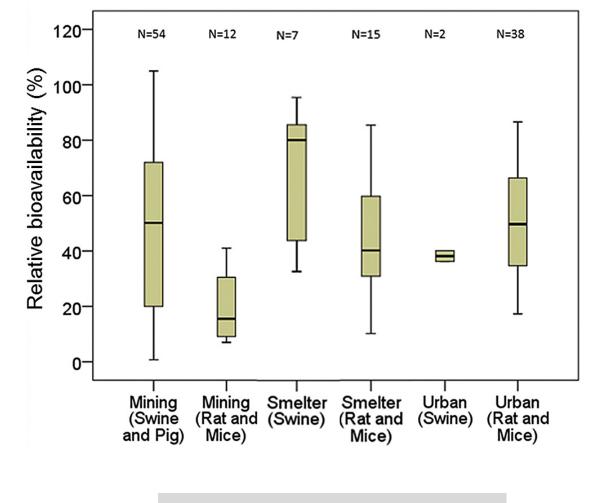
In-vitro oral bioaccessibility vs in-vivo bioavailability





Source: Li et al., 2015. Sci Total Environ 532: 812-820

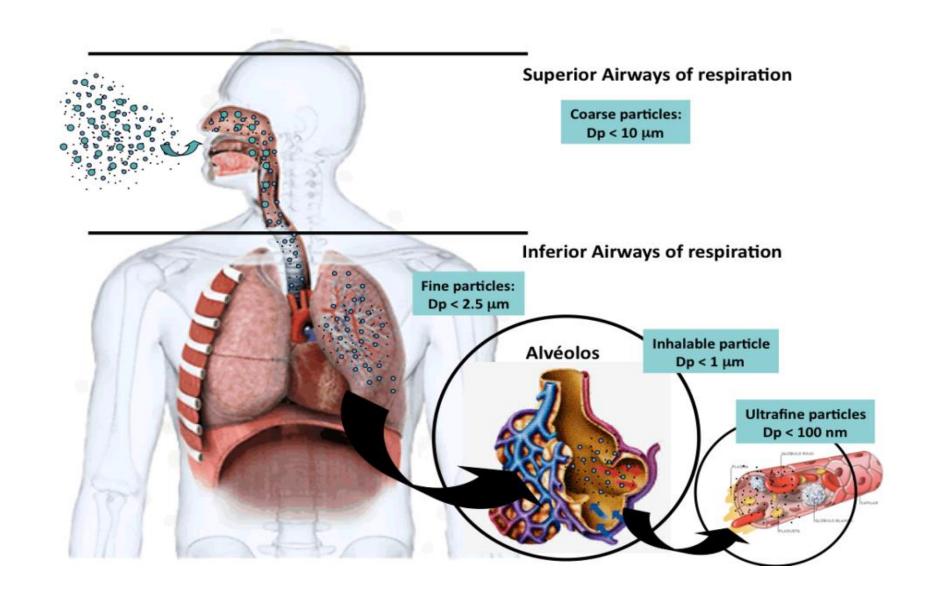
In-vitro oral bioaccessibility vs in-vivo bioavailability



School Bio-Bio SISS – Portici, 4-7 June 2019

In-vivo oral bioavailability in different animal studies

In both mining and smelter soils, the swines showed a higher oral bioaccessibility of Pb than rats and mice


Compared to swine, small animals (rats and mice) are economic and have been widely used in tests for assessing oral bioaccessibility of metals in farmlands, mining soils, smelters, gasworks, shooting ranges and house dust

Source: Yan et al., 2017. Chemosphere 184: 27-42

In-vitro methods to assess lung bioaccessibility of metals

Reference	Study type	Sample type	Elements of interest	Leaching agents used (pH)	Sample/solution amounts	Extraction time/ temperature	Extraction procedure	Analytical method ^a
Boisa et al. [20]	ENV	Fractionated Pb- contaminated soil, tailing and smelter samples	РЬ	Simulated epithelial lung fluid (SELF) (7.4 ± 0.2)	0.3 g/20 mL	Variable: up to 170 h/37°C	Samples rotated @ 30 RPM; then centrifuged @ 3000 RMP for 10 min	ICP-MS
Wiseman and Zereini [32]	ENV	Airborne PM_{10} , $PM_{2.5}$ and PM_1	As, Ce, Co, Cr, Cu, Mn, Ni, Pb, Sb, Ti and V	Artificial lysosomal fluid (4.3), Gamble's solution (7.4)	50 mL solution (mean sample amount of 43 mg) ^b	24h and 30 days/ 37°C	Sample filters shaken daily; then filtered	ICP-MS
Witt et al. [26]	ENV	Road dust samples; fractionated via air- suspension into >1 and <1 µm	Pb	Artificial lysosomal fluid (4.5)	Not specified	Not specified	Not specified	ICP-MS
Lima et al. [25]	ENV	Slag from a metallurgical facility	Ni, Cd, Zn and Mn	Gamble's solution (7.4)	50 mg/50 mL	Rapid test: 10, 30, 60, 120, 240, 360 and 720 min Slow test: 1, 3, 5, 7, 14, 21, 30, 60, 90, 120, 160, 210, 280 and 360 days/22– 25°C	Samples placed in flow through Teflon cylinders; then filtered	PIXE
Potgieter- Vermaak et al. [44]	ENV	Fractionated road dust (63–125 µm)	Cr and Pb	Artificial lysosomal fluid (4.5), Gamble's solution (7.4) and water	Not specified	Ranging from 1 h to 4 weeks/37°C	Samples shaken @ 150 RPM; aliquots taken directly	GF-AAS
Zereini et al. [34]	ENV	Urban airborne PM (PM ₁₀ , PM _{2.5} and PM ₁)	Pt, Pd and Rh	Artificial lysosomal fluid (4.4) and Gamble's solution (7.8)	50 mL solution (sample amount not specified) ^b	24h and 30 days/ 37°C	Sample filters shaken daily; then filtered	ICP-MS
Caboche et al. [18]	ENV	SRMs: NIST 1648a (urban PM), NIES 8 (vehicle exhaust particulates), BCR 038 (fly ash powder), NIST 2584 (indoor dust)	Ba, Cd, Ce, Co, Cu, La, Mn, Mo, Ni, Pb, Rb, Sb and Zn	Gamble's solution (7.4) and water	1-2 mg/20 mL (to achieve S/L values of 1/30, 1/500, 1/2000, 1/4000, 1/10,000, 1/ 20,000 and 1/ 50,000)	Variable: 15 min, 30min, 60min, 120min, 240min, 300min, 24h, 48h and 72h/37°C	Samples shaken on an orbital shaker @ 40 cycles/min; then centrifuged for 20min @ 14,600 RMP	ICP-MS
Colombo et al. [27]	ENV	SRMs: BCR 723 (road dust), SRM 2557 (used milled auto catalyst); synthetic PGE-loaded hydroxides	Pt and Rh	Artificial lysosomal fluid (4.5), Gamble's solution (7.4)	· · · · · ·	Variable (up to 700h)/37°C	Samples shaken (rate not specified); then filtered	ICP-MS

Source: Wiseman, 2015. Anal Chim Acta 877: 9-18

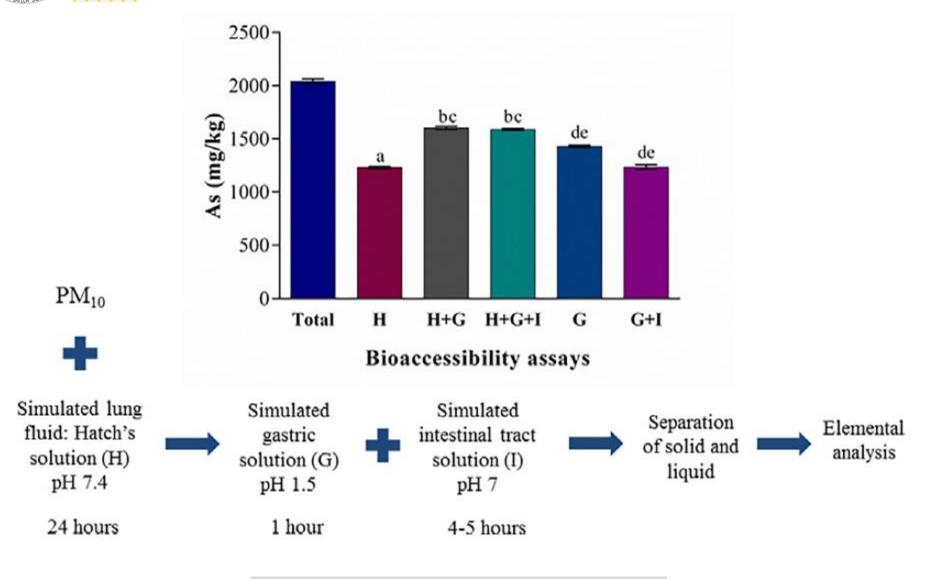
In-vivo inhalation studies using metal-containing aerosols

Reference	Matrix	Particle size	Metal(loid)s	Dose (exposure duration)	Exposure mode	T est. animal (strain)	Exposure endpoint
Damon et al. (1984)	Yellowcake	1.4–1.6 μm	U	0.014–0.12 mg/kg of U/rat body weight (once)	Nose only	Rats (Fischer-344)	Absorption into blood, tissues, excreta, cytotoxicity, metabolic activity
Ansoborlo et al. (1990)	UF ₄	6.6 µm	U	35 mg/m ³ (20 min)	Nose only	Rats (OFA strain)	Absorption into blood, tissues, excreta, initial lung and body burden
Kodavanti et al. (1998, 2000, 2002)	ROFA	<3 µm	As, Be, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, V, Zn	15 mg/m ³ (6 h/d, 3 d/wk. for 1–4 wk)	Nose only	Rats (Spontaneously hypertensive & normotensive Wistar-Kyoto)	Airway hyperreactivity, injury, inflammation, oxidative stress, pulmonary and cardiac histological lesions, cytokine gene expression
Artelt et al. (1999)	Pt coated onto Al_2O_3 powder	M2O3: < 5 µm, Pt:4 nm	Pt	4 & 12 mg/m ³ (5 h/d, 5 d/wk., 90 days)	Nose only	Rats (Lewis)	Absorption into blood, tissues, excreta, stomach content and speciation in BALF
Campen et al. (2001)	ROFA associated metal solution	nd	Ni, V, or Ni + V	0.3, 0.6, 1.2, 2.1 mg/m ³ (6 h/d, 4 days)	Whole body	Rats (Sprague-Dawley)	Cardiovascular and Thermoregulatory Effects
Hamada et al. (2002)	ROFA leachate suspended in PBS ROFA associated NiSO ₄ , VSO ₄ , ZnSO ₄ , CuSO ₄ , MnSO ₄ , CoCl ₂	nd	Ni, V, Zn, Cu, Mn, Co, Cd, Fe	10, 50, or 100 mg/ml Similar concentrations to those found in ROFA suspended in PBS	Whole body	Mice (BALB/c)	Airway responsiveness in presence and absence of an antioxidant 'Dimethylthiourea'
Muggenburg et al. (2003)	APM associated transition metal solutions	<3 µm	Cu, Fe, Mn, Ni, V	0.05 mg/m ³ (3 h/d, 3 days)	Oronasal	Dogs (Beagle)	Electrocardiograms, heart rate, heart rate variability, and abnormalities of waveforms
Kodavanti et al. (2005)	Fine concentrated ambient particle (CAP)s (40–60 \times ambient level)	<2.5 µm	Al, As, Ba, Be, Cd, Co, Cu, Pb, Mn, Ni, Ag, Ti, Zn	144–2758 μg/m ³ (2–4 h/day, 1–2 d, 6–7 repeats)	Whole body	Rats (Wistar Kyoto & Spontaneously hypertensive)	Pulmonary ventilation, injury and inflammation, cytotoxicity, enzyme activity, protein quantification
Lippmann et al. (2006)	Fine concentrated ambient particle (CAP)s ($10 \times$ ambient levels)	<2.5 μm	Ni, V	85 μg/m ³ (6 h/d, 5 d/wk., 6 months)	Whole body	Mice (ApoE —/—)	Cardiovascular and pulmonary mortality
Wallenborn et al. (2008)	APM associated Zn solution	nd	Zn	10, 30 or 100 µg/m ³ (5 h/d, 3 d/wk. for 72 days)	Nose only	Rats (Wistar Kyoto)	Cytotoxicity, lung & heart , enzyme activity and cardiac gene expression
Zhong et al. (2010)	Soot and Fe oxide	72 nm	Fe	Total particle conc. 250 mg/m ³ ; Fe conc.30 & 100 µg/m ³ (6 h/d for 3 days)	Whole body	Rats (Sprague- Dawley, neonatal)	Cytotoxicity, intracellular ferritin levels, oxidative stress, level of proinflammatory cytokines

Source: Kastury et al., 2017. Sci Total Environ 574: 1054-1074

School Bio-Bio SISS – Portici, 4-7 June 2019

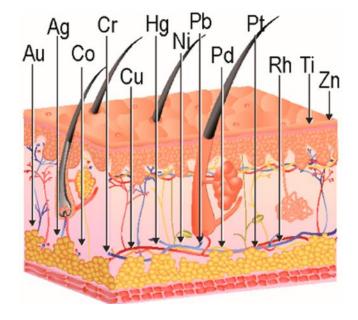
In literature, there is a lack of comparison between in-vitro and in-vivo data on concerning metals in soil. This is a knowledge gap for the application of inhalation bioaccessibility data for refining exposure assessment



Main limitations of in-vivo lung bioavailability studies:

- ✓ Intra-nasal or intra-tracheal instillation are often necessary to overcome issues related to inhalation assays
- Doses in many animal studies are several times higher than ambient concentrations, diminishing relevance or validity to human exposure scenarios
- ✓ Significant intra and interspecies differences exist in lung physiology, retention and respiratory uptake between model animals and humans, so the translation of animal data to humans is often inaccurate
- ✓ Synergistic or antagonistic behaviour of metals may affect bioavailability and subsequent toxicity in-vivo, which may not be reflected in in-vitro assays

Combined inhalation-ingestion bioaccessibility assay



Source: Kastury et al., 2018. Sci Total Environ 631-632: 92-104

In-vitro dermal bioaccessibility of metals

Dermal exposure to contaminated sites has generally received less attention than oral/inhalation exposure due to limited exposure scenarios and less perceived potential for toxicity, however, the risk can be significant for specific contaminants and scenarios

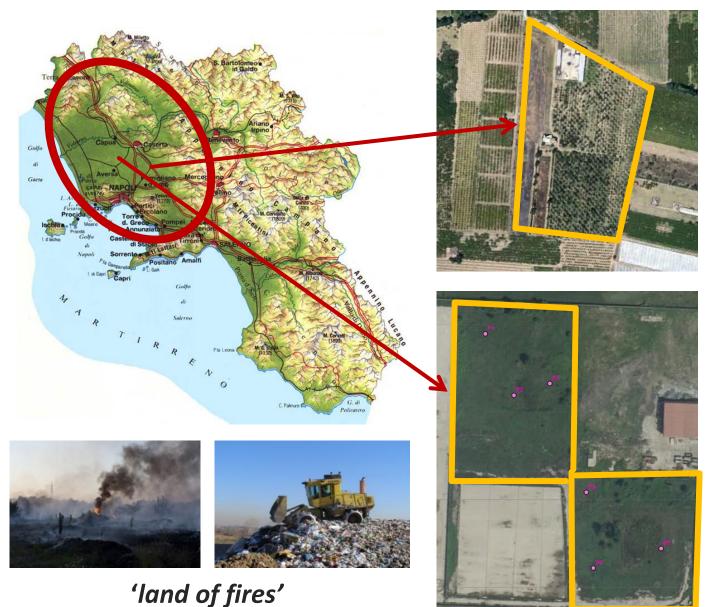
In-vitro dermal bioaccessibility of metals can be assessed through soil extraction by synthetic sweat formulations, such as EN 1811 and NIHS 96-10

Sample	Cr		Ni		Pb	Pb		Zn	
	2 h	8 h	2 h	8 h	2 h	8 h	2 h	8 h	
S1	0.7	1.6	0.4	0.7	3.6	2.6	0.24	0.1	
S3	3.3	5.6	3.6	7.0	10	6.6	26	34	
S4	3.0	5.6	3.8	7.8	13	8.7	6.6	8.2	
S5	1.7	2.7	1.3	2.0	8.2	7.6	0.12	< 0.05	
S7	0.9	1.4	10	6.8	4.3	3.8	45	39	
S8	< 0.05	< 0.05	7.5	6.1	13	10	0.4	< 0.05	
S9	< 0.05	0.1	3.4	1.7	1.5	2.0	9.5	8.5	
BGS 102	< 0.05	< 0.05	2.5	0.9	4.5	4.6	2.6	0.3	

Sweat formulation NIHS 96-10

Source: Chaparro Leal et al., 2018. Chemosphere 197: 42-49

LUNG AND ORAL BIOACCESSIBILITY OF POTENTIALLY TOXIC ELEMENTS IN TWO ITALIAN CASE STUDIES OF SOUTH ITALY


- ✓ Study carried out by soil chemists of DiA-UniNA, involving two Master students writing and discussing theses on this research topic
- ✓ Orally-presented at European Geosciences Union General Assembly 2019 in Vienna, Austria (16,273 participants from 113 countries)

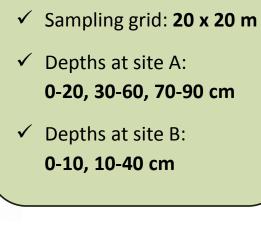
The case studies

<u>SITE A</u>

6 ha of <u>farmland</u> currently confiscated by the Italian Judiciary due to past illegal burial of tannery wastes

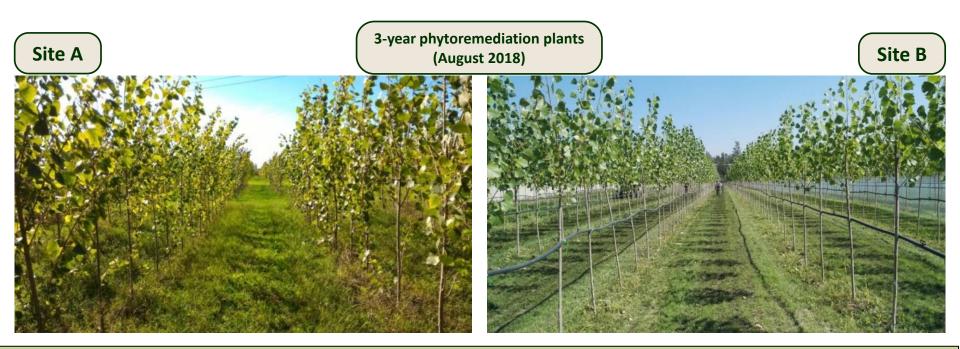
<u>SITE B</u>

3.5 ha of <u>industrial soil</u> inside an automobilebattery recycling plant in operation since 1970


School Bio-Bio SISS – Portici, 4-7 June 2019

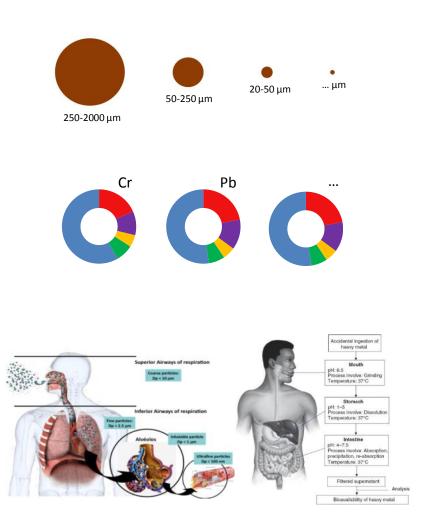
Soil sampling strategy

School Bio-Bio SISS – Portici, 4-7 June 2019


Assisted phytoremediation plants

Phytoremediation plants consisting of poplar trees (*Populus nigra* L.) and permanent grass cover, assisted by compost amendment and irrigation system, were then implemented on both sites few years ago

IMPLEMENTATION OF ECO-COMPATIBLE PROTOCOLS FOR AGRICULTURAL SOIL REMEDIATION IN LITORALE DOMIZIO-AGRO AVERSANO NIPS (LIFE11/ENV/IT/275 – ECOREMED)

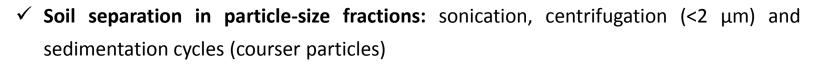


Aims of the work

- To separate selected topsoil samples (previously sieved at 2 mm) into particle-size fractions (250-2000, 50-250, 20-50, 10-20, 2-10 and <2 μm)
- To assess the concentration and the distribution of the potentially toxic elements (PTEs) in the different soil particle-size fractions
- To assess the human lung and oral bioaccessibility of the PTEs in the different soil particle-size fractions, in order to study the risks for health of residents and workers living or working nearby the potentially contaminated sites

Selection of topsoil samples

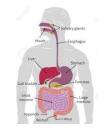
Only topsoil samples were taken into account, since they could be interested by wind erosion and soilparticle dispersion in the atmosphere



8 topsoil samples from each site were selected on the basis of spatial distribution in the site, physicochemical properties and extent of contamination

Caporale A.G. - University of Naples Federico II

Analytical methods


- ✓ **Pseudo-total contents:** microwave-assisted *aqua regia* digestion (ISO 11466, 1995)
- Bioaccessibility in upper respiratory tract: Simulated Epithelium Lung Fluid (SELF, Boisa et al., 2014)
- ✓ Bioaccessibility in lower respiratory tract: Artificial Lysosomal Fluid (ALF, Stopford *et al.*, 2003)
- ✓ Oral bioaccessibility in gastric (G) and gastro-intestinal (GI) tracts: Unified BARGE Method (UBM, Barge-Ineris, 2010)
- ✓ Analysis of all the extracts: Atomic Absorption Spectroscopy (FAAS, HG-AAS or GF-AAS)

Main remarks

- Our findings highlight the potential risk of contaminated topsoil particles of both sites for human health, if air-dispersed by wind
- The PTEs distributed in the finer soil fractions (PM10 and PM2.5) are those of major concern, since these particles are most easily erodible by wind and can reach the upper respiratory tract (PM10 and PM2.5) or even enter the pulmonary alveoli (PM2.5). These soil particles are effective sinks of PTEs due to their higher surface area and reactivity
- Bioaccessibility methods employed in this study guarantee a high degree of similarity with the digestive and respiratory systems of the human body, in terms of biochemical composition and fluid pH, residence times and temperature
- It is thus clear how is important to properly manage the phytoremediation plants implemented in both sites to efficiently cover the contaminated topsoils over time

- ✓ Italian Society of Soil Science (SISS)
- ✓ Invited Speakers, Lecturers, Local Organising and Scientific Committees of School Bio-Bio 2019
- ✓ All the Pedologists, Soil Chemists, Agronomists and Microbiologists involved in the characterisation and phytoremediation of sites A and B → <u>human resources which</u> <u>have recently built a transdisciplinary bridge in soil science for scientific interests</u> <u>and even for environmental and cultural purposes</u>
- ✓ LIFE11/ENV/IT/275 (ECOREMED) and After-LIFE projects financing field and lab activities

✓ <u>YOU ALL FOR YOUR KIND ATTENTION!</u>

Greetings

Italian Society of Soil Science School of Soil Biodiversity and Bioindication XI cycle

BIODIVERSITY AND BIOINDICATORS IN MONITORING AND MANAGEMENT OF CONTAMINATED SOILS

4 - 7 JUNE 2019

Department of Agricultural Sciences University of Naples Federico II, Portici, Italy

Royal Palace of Portici (Naples, IT) \rightarrow OUR PRIDE!

School Bio-Bio SISS – Portici, 4-7 June 2019